UV Radiation Measurement System for the UV Curing of Fluids Disposed on Textiles

Abstract
Processes of the latticing of polymer overprints functionalising textiles in the presence of photoinitiators require using high-energy UV radiation sources. However, the values of radiation intensities and UV doses used should be controlled so that they are no greater than those required by the proper course of the latticing process, on account of the high degrading impact of UV radiation on the fibre structure. In this article a mathematical model of intensity and UV dose radiation measurement constructed on the basis of the analysis of the phenomenon and catalogue information given by the producers of the radiation source, the UV filter and the sensor. The model of UV intensity measurement was analysed with regard to inaccuracy on the basis of the uncertainty theory; the relative uncertainty of the measurement obtained was of an order of 3%.

Key words: disposed fluids, textiles, UV curing, UV dose radiation, UV dose sensor, measurement uncertainty.

Introduction
The process of polymer overprint latticing by means of a UV source requires supplying an optimal radiation dose. As a rule, the radiation dose during the latticing process ranges from 0.5 to 15.0 J/cm². The need for measuring the intensity and dose of UV radiation results from the necessity to optimise the latticing process so that, on the one hand, appropriate durability of the overprints for use and washing is obtained, while on the other, the degrading effect of UV radiation on the fibre structure is limited.

Measurements of UV radiation intensity and doses for the purpose of polymer overprint latticing, over a wavelength range of 200 ÷ 400 nm, are most frequently carried out with optoelectronic processing systems. Typical photosensitive substrates generating an electric signal due to UV radiation are made on the basis of silicon carbide, SiC, titanium dioxide TiO₂, gallium and aluminium nitrides, (Al)GaN [1 - 4]. However, they require appropriate calibration owing to sources of errors related to the nonlinear characteristics of the elements in the optical signal processing circuit and the nonlinear characteristics of the sensor sensitivity in the electric signal processing circuit [5].

There are also solutions in which measurements of the radiation dose are conducted without the processing of this quantity into an electric signal. Yet, they are not suitable for use in control systems, and as a result they are of limited use in latticing processes. As a rule, their use is limited to dose indicators (dosimeters) for people standing within range of UV radiation. The principle of operation of such measuring systems consists in the evaluation of the degradation of the biological material disposed onto the substrate during UV radiation [6 - 9] or in the transformation of chemical compounds due to their excitation by the absorption of waves of the UV radiation range [10].

To programme the intensity and dose of UV radiation, a system was developed for measuring these two quantities on the basis of a semiconductor diode with non-zero sensitivity over a range of wavelengths of 200 ÷ 400 nm. The photosensitive substrate of this diode is made on a base of silicon carbide, SiC. Since no semiconductor sensors for large UV radiation intensities, of an order of 10 - 15 W/cm², are produced nowadays, it was suggested that a UV filter reducing the intensity to the levels processed by the sensor be incorporated into the optical signal processing circuit.

Idea and model of the measurement of the intensity and dose of UV radiation
A general conception of a system for measuring the intensity and dose of UV radiation is shown in Figure 1.

Characteristics of the UV radiation source are given in the form of a spectral distribution $P(\lambda)$ expressing radiation power. The main element of the system for measuring UV radiation intensity is a measuring head, presented schematically in Figure 2.

The sensor processing this intensity into an electric signal is the photodetector of a set sensitivity $S(\lambda)$. In addition, in the optical signal processing circuit, two filters are used. The task of filter #1 is to limit the spectrum of radiation falling onto the photosensitive surface of the photodetector to a wavelength range of 200 ÷ 400 nm. The role of filter #2 of the transmission $T(\lambda)$ is to limit the intensity $E(\lambda)$ of UV radiation to the level proc-
essed by the photodetector. Thus, radiation of spectral distribution $P_f(\lambda)$ reaches the photodetector.

Taking into account the parameters of the particular layers of the measuring head, the processing equation can be written in the form:

$$i_2 = \int E(\lambda) \cdot T(\lambda) \cdot S(\lambda) \cdot d\lambda,$$

where i_2 is the total photoelectric current generated by the photodetector, measured on the stand.

A model for measuring the UV radiation intensity and dose during the exposition of antibacterial and antistatic overprints was constructed on the basis of an analysis of the phenomenon, catalogue information given by producers in the form of antibacterial and antistatic overprints

For the wavelength λ_d the UV radiation power, expressed as a percentage, is

$$P(\lambda_d) = P_{\lambda_d} \ (\text{Figure 3}),$$

where 100% means a maximum of the UV radiation power in the spectral distribution. Taking into consideration the transmission $T(\lambda)$ of filter #2 (Figure 4), the value of the power is expressed by the relationship:

$$P_{\lambda_d} = P_{\lambda_d} \cdot \frac{T_{\lambda_d}}{100},$$ \hspace{1cm} (2)

where: T_{λ_d} – the transmission of the filter for wavelength λ_d; P_{λ_d} – the source radiation power in Watts for wavelength λ_d.

On the basis of numerical data of filter transmission in the wavelength domain (Figure 4), the characteristic was approximated by linear function $T(\lambda) = 0.0004\lambda - 0.07$ to the wavelength range of 200 ÷ 400 nm.

On the basis of equation (2), replacing P_{λ_d} by P_{λ_d}, expressed as a percentage, the spectral distribution of the UV radiation source with the use of a filter is shown in Figure 5.

The total current i_2 generated by the UV photodiode is converted into voltage U_2 using the current-to-voltage system, which contains two operational amplifiers $W1$ and $W2$. A schematic of the electric system is shown in Figure 7.

Hence, with the voltage U_2 and resistances R_1, R_2, R_f, the current is expressed by the relationship:

$$i_2 = \frac{R_f \cdot U_2}{(R_1 + R_2)R_f}.$$ \hspace{1cm} (3)

Considering the sensor sensitivity S_{λ_d} (Figure 6) for the wavelength λ_d, the current i_2 is expressed by the equation:

$$i_2 = \sum_{\lambda} P_{\lambda_d} S_{\lambda_d}.$$ \hspace{1cm} (4)

Assuming the spectral line height in a given wavelength λ_d to be equal to K_{λ_d}, the following conjunction is true:

$$i_{\lambda_d} = \frac{P_{\lambda_d} S_{\lambda_d} \cdot K_{\lambda_d}}{K' S(\lambda) T(\lambda)} + \frac{K' S(\lambda) T(\lambda)}{K'},$$ \hspace{1cm} (5)

where: K'_{λ_d} is the area of the spectral line of height P_{λ_d}, which expresses the radiation power after the use of a filter as a percentage (Figure 5), and width $\Delta \lambda_d = 1 = \lambda_d$; k is the total number of spectral lines.

From equations (2) and (5), and taking into account the entire range of wavelength λ, the UV radiation distribution is defined by the equation:

$$P(\lambda) = \frac{100K'_f i_2}{K' S(\lambda) T(\lambda)}.$$ \hspace{1cm} (6)

The studies carried out demonstrate that the radiation distribution (6) differs from the real spectral distribution $P(\lambda)$ determined for the source. For this reason, a
The UV radiation dose, determined in a time interval from t_1 to t_2, is expressed by the relationship:

$$Q_2 = \int_{t_1}^{t_2} E(t) \, dt .$$

(14)

Figure 7. Schematic of the electric system.

Figure 8. Distribution of UV radiation intensity

Assessment of the Inaccuracy of the Determination of UV radiation intensity

Analysis of the inaccuracy of determination of the intensity E of UV radiation for a specified wavelength λ was made on the basis of the uncertainty theory [11-12]. The inaccuracy of intensity measurement, characterising the scatter of the values attributed to the quantity being measured, is described by a complex uncertainty:

$$U(E) = k u_c(E),$$

(15)

where: k – the coverage factor ($k=2$ for confidence level 0.95); $u_c(E)$ – the combined standard uncertainty of estimate E. The equation from which the estimate E of the true value of UV radiation intensity is calculated results from equation (10). After the characteristics of the radiation source, UV filter and sensor are taken into consideration, and assuming that $\lambda_{max} - \lambda_{min} = 1$, the measurement model has the following form:

$$E = \frac{P_1 U_s R_1}{K' A (R_1 + R_2) R_f} (0.54429 - 0.00143 \lambda)$$

(16)

where $A = 0.00054 \, \text{cm}^2$; $R_1 = 1000 \, \Omega$; $R_2 = 470,000 \, \Omega$; $R_f = 220,000 \, \Omega$; $U_s = 5 \, \text{V}$; for assumed wavelength $\lambda = 310 \, \text{nm}$ we have $g_\lambda = 2.31$, hence $E = 152 \, \text{mW/cm}^2$.

Making use of the uncertainty propagation law [11] and assuming that there is a correlation of estimates of quantities P_λ and K', using equation (16), we obtain a relationship of the combined uncertainty $u_c(E)$ of estimate E as well as the standard uncertainties of components P_λ, K', λ, R_1, R_2, R_f, U_s. This relationship is of the form equation (17) where: $r(P_\lambda,K')$ – the coefficient of correlation of the estimates of the quantities of P_λ and K'.

$$E_{UVC} = \frac{1}{\lambda_{UVC_{max}} - \lambda_{UVC_{min}}} \int_{\lambda_{UVC_{min}}}^{\lambda_{UVC_{max}}} \frac{100K'fU_sR_1}{K'A(R_1 + R_2)R_f} g(\lambda) \, d\lambda ,$$

(17)

$$E_{UVB} = \frac{1}{\lambda_{UVB_{max}} - \lambda_{UVB_{min}}} \int_{\lambda_{UVB_{min}}}^{\lambda_{UVB_{max}}} \frac{100K'fU_sR_1}{K'A(R_1 + R_2)R_f} g(\lambda) \, d\lambda ,$$

(11)

$$E_{UVA} = \frac{1}{\lambda_{UVA_{max}} - \lambda_{UVA_{min}}} \int_{\lambda_{UVA_{min}}}^{\lambda_{UVA_{max}}} \frac{100K'fU_sR_1}{K'A(R_1 + R_2)R_f} g(\lambda) \, d\lambda .$$

(12)

$$u_c^2(E) = \left(\frac{\partial E}{\partial P_\lambda} \right)^2 u^2(P_\lambda) + \left(\frac{\partial E}{\partial K'} \right)^2 u^2(K') + 2 \left(\frac{\partial E}{\partial P_\lambda} \right) \left(\frac{\partial E}{\partial K'} \right) r(P_\lambda,K') u(P_\lambda) u(K') +$$

$$+ \left(\frac{\partial E}{\partial \lambda} \right)^2 u^2(\lambda) + \left(\frac{\partial E}{\partial R_1} \right)^2 u^2(R_1) + \left(\frac{\partial E}{\partial R_2} \right)^2 u^2(R_2) + \left(\frac{\partial E}{\partial R_f} \right)^2 u^2(R_f) + \left(\frac{\partial E}{\partial U_s} \right)^2 u^2(U_s)$$

Equations: 11, 12, 13, and 17.
In the case of the remaining estimates of the input quantities, it was found that there are no grounds for rejecting the hypothesis that these variables are not pair correlated at a 0.05 significance level.

Table 1 presents an uncertainty budget of the determination of radiation intensity \(E \) for a wavelength \(\lambda = 310 \) nm. Calculations of standard uncertainties by the B type method were performed, assuming the existence of a uniform distribution of possible values within the interval.

For estimates of correlated quantities \(P_A \) and \(K_f \), a correlation coefficient was obtained - \(r(P_A,K_f) = 0.95 \). The covariance for these quantities is \(u(P_A,K_f) = 73.8715 \) (%W)^2, while the product of sensitivity coefficients corresponding to the estimates of the correlated quantities is equal to \(-4.96 \times 10^{-4} \) W^2/((%W)cm^2). Thus, the value of the component of the combined variance of the output quantity (the intensity \(E \) of UV radiation) is \(-0.07327 \) (mW/cm^2)^2.

Finally, the result of the measurement of the UV radiation intensity at a 0.95 confidence level can be written as \(E = (152 \pm 4) \) mW/cm^2. Hence, the relative uncertainty of the measurement is 3%.

Conclusions

In the UV curing of fluids disposed on flat textiles and moved under long-arc medium-pressure from a high power mercury lamp, determination of the total dose of UV radiation is possible using the UV radiation measurement system presented. The UV sensor is mounted on the textile area and moves with the textiles through the UV radiation zone.

The solution presented enables to optimise the process of the tacking of overprints functionalising textiles in conditions of extreme UV radiation, from both the point of view of their resistance to washing and fibre degradation. Adjustment of the range of UV radiation intensities processed to the range of intensities processed by the semiconductor sensor is made possible by use of a filter of specific transmission. The mathematical model of the measurement system allows to predict the UV radiation intensity and dose at a given filter transmission.

The relative uncertainty of the UV radiation intensity measurement calculated is 3%. The greatest percentage in the combined variance, 28% each, are shown by the estimates of resistance variances \(R_1 \), \(R_2 \) and \(R_f \). To improve the metrological quality of the model, resistors of smaller inaccuracy should be used. In the case under consideration, one percent resistors were used.

Acknowledgment

This work was financed as part of the research project "Fast and Patterned Digital Micro-Dispersion of Non-Toxic Fluids for Multifunctional Protective Textiles" (DIGITEX), 6 PR UE (2006-2010).

References

13. Technical note of a high pressure lamp of the HOK 20/100 type of Philips manufacture.
14. Technical note of a UV filter of of NDQ-250-0.5 type of CVI Melles Griot BV manufacture.
15. Technical note of a sensor of SG01S-HT type of sglux manufacture.

Received 02.03.2009 Reviewed 06.11.2009
6th Central European Conference 2010

13 - 14 September 2010 - Bratislava, Slovak Republic

Organized by:
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Polymer Materials, Department of Fibres and Textile Chemistry, who celebrates his 70th Anniversary, 1940-2010
- Slovak Society of Industrial Chemistry

Co-operating Institutes and Universities:
- Institute of Biopolymers and Chemical Fibres, Lodz, Poland
- Technical University of Liberec, Czech Republic
- University of Maribor, Slovenia
- University of Bielsko-Biala, Poland

Topics:
- Advanced Fibres
- Technical Textiles
- Fibre and Textile Composites
- Textile »Green Chemistry«
- Textile Chemical Processing
- Textile Recycling
- Technical Textiles
- Textile Surfaces
- Smart Fibrous Structures
- Testing

Scientific Committee:
Chairman: Prof. Anton Marcinčin, FCHFT, STU in Bratislava, SK
Members:
- Danuta Ciechanska, Institute of Biopolymers and Chemical Fibres, Lodz, PL;
- Andrej Demšar, University of Ljubljana, SL;
- Ana Marija Grancaric, University of Zagreb, HR;
- Martin Jambrih, SSICH in Bratislava, SK;
- Jaroslav Janicki, University of Bielsko Biala, PL;
- Izabella Krucinska, TU Lodz, PL;
- Alenka Majcen Le Marechal, University of Maribor, SL;
- Pavol Lížák, TNU Ružomberok, SK;
- Jiří Militký, TU of Liberec, CZ;
- Tanja Pušic, University of Zagreb, HR;
- Iva Sroková, TNU Púchov, SK;
- Jozef Šesták, VUTC-Chemitex, SK;
- Anna Ujhelyiová, STU in Bratislava, SK;
- Tibor Varga, VUCHV, SK;
- Victoria Vlasenko, Kiev National University of Technologies and Design, UA;
- Jakub Wiener, TU of Liberec, CZ;
- Andrzej Wlochowicz, University of Bielsko Biala, PL

Organising Committee:
Chairperson: Anna Ujhelyiová, STU in Bratislava
Members:
- Marcela Hricová, STU in Bratislava;
- Ľuba Horbanová, STU in Bratislava;
- Michal Krištofič, STU in Bratislava;
- Jozef Ryba, STU in Bratislava;
- Petronela Vencelová, STU in Bratislava

For more information please contact:

Anna Ujhelyiová
Department of Fibres and Textile Chemistry, IPM Faculty of Chemical and Food Technology, STU in Bratislava
Radlinského 9, 812 37 Bratislava, Slovak Republic
Tel./Fax: 00421 2 529 68 598, E-mail: anna.ujhelyiova@stuba.sk, marcela.hricova@stuba.sk