When the dynamics of the liquid spot become steady, the area of the liquid spot on the inner and outer surfaces of fabrics knitted from a cotton yarn and synthetic thread combination is greater than in the case of fabrics knitted from a man-made bamboo yarn and synthetic thread combination. The greater area of the liquid spot means this fabric will dry more rapidly.

The fabrics knitted from cotton and bamboo yarns (outer layer), as well as synthetic Coolmax threads (inner layer) came top, with the fastest water absorption. The fabrics knitted from a PP thread and cotton yarn combination (especially the ones with a higher loop density) showed the worst ability to absorb water.

When the dynamics of the liquid spot area become steady, the area of the spot on both the inner and outer sides of plain plated weft knitted fabric is similar. Meanwhile, the spot area of weft knitted fabrics of combined structure with loops of synthetic threads and cotton yarns on the inner side is almost two times greater than on the outer side. Thus, the sensation of dryness is better when wearing a product made of weft knitted fabrics of plain plated pattern.

When the dynamics of the liquid spot area become steady, the spot areas in the outer layer of all the weft knitted fabrics (for all corresponding raw materials) analysed are very similar, thus their drying conditions are similar as well.

Acknowledgments

We would like to thank JSC “Omniteksas” and Vydas Damalakas for their technical support.

References