Introduction

Historic textiles represent a very important part of material culture. They give us not only the knowledge of social history, artistic trends and international trade, but also information about technological progress. These textiles may be composed of many different fibres, the most common of which are silk, wool, cotton, linen and other man-mades. The arrases in Wawel Castle, which are a Polish national treasure, were made from natural fibres such as silk and wool, and dyed with natural dyes. Zygmunt II August, the King of Poland and the last descendant of the Jagellonian dynasty, purchased 170 arrasses in Brussels workshops for the interior decoration of castles and palaces in the second half of the 16th century. After a stormy history, 142 of them have survived to today [1]. Unfortunately, the natural raw materials used for making arras are susceptible to the action of micro-organisms, especially fungi [2]. Biological damage caused by the enzymes generated by micro-organisms shows changes in the morphological structure of fibres, decomposition of molecular and supermolecular structures, as well as changes in colour [3]. In addition, all textiles become fragile with age and inappropriate environmental conditions. Light, temperature, relative humidity, dustiness and air pollution promote the deterioration of textile materials. Hence, conserving and protecting them against devastation by all these factors is a very serious challenge for conservators.

Analytical science can play an important role in characterising fibre behaviour,

Testing Textiles Using the LA-ICP-MS-TOF Method

Abstract

The LA-ICP-TOF-MS method (Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry) is an analytical technique for determining trace elements and their isotopes in solid samples. The action of a high-energy laser beam on a solid results in the evaporation and removal of material in the form of neutral atoms and molecules, as well as, positive and negative ions from the solid surface exposed to this radiation. In chemical analysis, the pulse laser based on a solid such as neodym (Nd:YAG) has proved to be very useful, as it makes it possible to incorporate solid samples directly into plasma. It has been utilised as a source of very high energy with specific properties, and can be used to analyse various solids (conductive and non-conductive) with various sizes and shapes, where the laser beam can be focused on a very small surface with exceptionally precise location, while the evaporated material can be immediately analysed. This technique has been successfully used to analyse the elemental composition of the Wawel Castle’s arrases pieces, where the maximum amount of information was obtained with negligible damage to the samples. The following elements have been discovered: Ag and Au (derived from strip) and Li, Al, Cr, Cu, Zn, Rb, Sr, Sn, Ba, Ce, Hg, Pb, Bi, U (mainly in fabrics). The LA-ICP-MS-TOF method is finding growing application in the analysis of geological, environmental and forensic samples. An attempt was made to apply this technique for testing textiles, especially historical ones.

Key words: elemental analysis, historical textiles, Wawel, Cracow.

Figure 1. A block scheme of LA-ICP-TOF-MS.

Table 1. Set of parameters for the LA-ICP-TOF-MS system for testing the Wawel arrasses [8].

<table>
<thead>
<tr>
<th>Laser Parameters</th>
<th>ICP</th>
<th>TOF-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser power: > 7.5 mJ per shot (85%)</td>
<td>X position: 11.2 mm</td>
<td>Skimmer: -1500 V</td>
</tr>
<tr>
<td>Pulse rate: 20 Hz</td>
<td>Y position: -1.1 mm</td>
<td>Fill: -40 V</td>
</tr>
<tr>
<td>Spot size: 150 μm</td>
<td>Z position: -0.1 mm</td>
<td>Extraction: -1100 V</td>
</tr>
<tr>
<td>Scan rate: 100 μm/s</td>
<td>Nebulizer Flow, 0.79 l/min</td>
<td>Fill Bias: 0 V</td>
</tr>
<tr>
<td>Distance between lines: 1000 μm</td>
<td>Plasma Flow, 10.0 l/min</td>
<td>Z1: -770 V</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Flow, 1.0 l/min</td>
<td>Y Mean: -160 V</td>
</tr>
<tr>
<td></td>
<td>Power: 800 W</td>
<td>Y Deflection: 2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z Lens Mean: -1030 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z Lens Deflection: -2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lens Body: -130 V</td>
</tr>
</tbody>
</table>

Results
identifying textile materials and assessing their deterioration and the conditions and risks for preserving them.

Recently, many different modern techniques for investigating the chemical and physical properties of ancient textiles have been published. For example, SEM-EDX has been used for understanding the deterioration of the textile materials and detecting of metallic mordants. These techniques are called non-destructive (ND) methods, because they are used to investigate the historical textile materials while not causing destruction to them [4].

Another such technique is the Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectroscopy (LA-ICP-TOF-MS). This is a very attractive analytical technique used to determine trace quantities of elements and their isotopes in solid samples. In the chemical analysis, a pulse laser based on a solid such as neodymium (Nd:YAG) has proved to be extremely useful as it enables the direct introduction of solid samples into plasma. It is used as a source of high energy with special properties intended for various applications, including analyses of different solids of various sizes and shapes, where the laser beam can be focused very precisely on a very small sample surface, while the evaporated material can be immediately analysed [5 - 7]. Currently, LA-ICP-MS-TOF is finding growing application in the analysis of various samples such as geological, environmental and forensic samples.

The main aim of this work was to examine and investigate the elemental composition of the Wawel arrases in order to understand the nature of these textiles. Our studies aimed to obtain the most information possible with negligible damage to the tested samples. For the first time, an attempt was made to use this unique LA-ICP-MS-TOF method in a semi-quantitative and comparative analysis of the metal content in textiles. As the object of the studies, original samples of Wawel tapestries obtained from the store of the National Museum in Cracow was chosen. The pieces were analysed without any preparation, as supplied. From historical sources, it is known that gold or silver strips were quite often spun into the tapestry structure, so we expected to confirm the presence of these metals (Au, Ag) and additionally obtain information about the presence of other elements within the mass range from 6 to 238 amu (atomic mass unit) in the samples of the arrases.

Experimental

Apparatus

In these studies we used an Optimass 8000 ICP-TOF-MS (Inductively Coupled Plasma Time of Flight Mass Spectrometer) produced by GBC (Australia) with a laser ablation unit (LA) produced by CETAC Laser Ablation System (USA). The block scheme of the apparatus is presented in Figure 1. The action of a high-energy laser beam on a solid results in the evaporation and removal of material in the form of neutral atoms and molecules, positive and negative ions from the surface of the solid exposed to this radiation. The use of a TOF analyser in the ICP-MS method allows all the elements contained in the sample under testing to be detected simultaneously.

The Wawel arrases’ samples were placed inside an enclosed chamber called the ablation cell, and a laser beam was focused on the surface of arrases. When the laser is fired, a cloud of particles is produced. These particles are removed from the sampling cell by an argon carrier gas, and are swept into the ICP plasma torch for atomisation and ionisation. Next, ions of all the elements present in the sample are transferred to the TOF analyser (Time of Flight Analyser) through an MS interface which connects ICP plasma (atmospheric pressure) with the TOF analyser (vacuum pressure of about 2-3 µTorr). When these ions reach the TOF analyser, they are pushed out by an orthogonal accelerator and go through a reflectron, finally reaching a detector. The time needed to reach the detector is strictly linked to the value of mass-to-charge ratio (m/z), so the lightest ions reach the detector first, and are followed by the heavier ones. As a result the mass spectrum is obtained.
Figure 5. Time scan of a number of elements present in arrases over the line-scanned area with the intensity characteristic for each element; the particular scans are described by the chemical symbols, the isotopic atomic weights, and the relative intensity of ions or isotopes below them.

Figure 6. Line scan of Ag and Au present in metal strips.

Figure 7. Relative intensity of Hg and Au ions present in fiber thread with and without gold strip.

Figure 8. Line scan of Rb, Sr, Zn and Sn.

Figure 9. Line scan of Au, Pb, Al and Cu.

Table 1 presents the set of parameters used for the LA-ICP-TOF-MS for testing the Wawel arrases.

Samples tested
The tapestry samples were obtained from the store of the National Museum in Krakow and studied as supplied. The examples of the tested pieces of the Wawel arrases are presented in Figure 2. Some of the pieces studied contained metal threads (a), while others were only dyed (b).

Methodology
Each tested piece of the Wawel arrases was about 3×3 cm. The pieces were put into an ablation cell. The laser power was >7.5 mJ per shot (85% maximum laser power).

The samples were scanned along the ablation line for 160 seconds at a scan speed of 100 µm/s, so the total length of scan line was 16 mm.

Results
Sample structure
The microscopic analysis of this structure disclosed several characteristic weaves such as simple knotting, double knotting, splits and group equalising gathering, presented in Figure 3.

The diameter of threads present in the samples investigated are as follows:
- warp c. 860 µm,
weft c. 170-640 µm dependent on colour,
thread with gold strip c. 620 µm,
thread with silver strip c. 430 µm.

The LA-ICP-TOF-MS analysis
The TOF analyser provides a true multi-
elemental capability for these rare and
valuable samples. This maximises the
information that can be gathered while
minimising the sample damage. A time
scan of the number of elements over the
line-scanned area presented in Figure 4
(see page 88) was obtained (Figure 5 - see
page 89). The total length of the laser ab-
lusion line scan was 16 mm. The following
elements were discovered in the tapestry
samples: Ag, Au, Li, Al, Cr, Cu, Zn, Rh,
Sr, Sn, Ba, Ce, Hg, Pb, Bi and U. The
presence of most elements in wool of dif-
ferent origins is confirmed by our previ-
ous studies [10]. The difference of relative
intensity, which is characteristic for each
element, of the particular element’s spec-
trum and which changes over the time of
scanning (160 sec.) is connected with the
fabric’s structure. Based on an elemental
analysis of the obtained results, we can
see that the presence of: Ag and Au de-
erves from strips, and Hg, Sn, Sr, Zn, Al
and others mainly derive from the woven
fabric, as shown in the diagrams presented
in Figures 6, 7, 8, and 9 - see page 89).

The results of the studies demonstrate the
particularly large participation of mercury in
the structure of the arras examined.
Considering that in the Middle Ages gold
was mostly obtained by the method of cre-
ating an amalgam with mercury, and then
obtaining the pure metal by vapourising
the mercury, the large relative intensity of this
element in the fabric cannot be doubted.
The diverse courses of the change in the
intensity for Au and Hg due to the time of
scanning (length) prove that Hg is mostly
present in all the fabric’s structure, and is
not connected with gold. This phenomen-
on probably results from the evapora-
tion of mercury from the surface of gold
strips over a period of several hundred
years and the subsequent absorption of
this element by the wool and silk fibres.
A similar mechanism was observed in a PhD
thesis concerning the sorption and
desorption of volatile pollution of the air
with formaldehyde and styrene by textile
furnishing products [11]. This effect may
easily originate from antibacterial agents
containing mercury, such as were often
used in the Middle Ages. Figure 10 shows
an example of a part of the mass spectrum
with different Hg isotopes present in the
selected ecru weft. In Table 2 the relative
intensities of Hg ions present in different
weft types are presented.

Table 2. Relative intensity of Hg ions present in different type of weft.

<table>
<thead>
<tr>
<th>Type of weft</th>
<th>Relative intensity of Hg ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>thread with Ag strip</td>
<td>~ 56,000</td>
</tr>
<tr>
<td>thread with Au strip</td>
<td>~ 210,000</td>
</tr>
<tr>
<td>ecru thread</td>
<td>~ 30,000,000</td>
</tr>
<tr>
<td>brown thread</td>
<td>~ 11,500,000</td>
</tr>
<tr>
<td>dark green thread</td>
<td>~ 7,000,000</td>
</tr>
<tr>
<td>light green thread</td>
<td>~ 1,300,000</td>
</tr>
<tr>
<td>indigo thread</td>
<td>~ 3,000,000</td>
</tr>
</tbody>
</table>

Conclusions
The results obtained in the present work
reveal the great potential of the LA ICP-
TOF-MS technique in yielding data
concerning the elemental composition of
fabrics as well as unique works of art.
Combining the laser ablation and TOF
analyzer in the ICP-MS method allows
the simultaneous detection of all the elements
contained in the sample under testing
with negligible damage to the samples.
This method may thus be used for the
quasi-non-destructive analysis of solid
samples of textiles. The main advantage is
that direct chemical information from the
solid material can be obtained, and solids
of any shape and matrix can be analysed.
The samples studied do not need any
preparation, which saves much time when
conducting the analysis. Because it is dif-
ficult to select standards and certificate
materials for suitable solid samples, this
method permits mainly semi-quantitative
and comparative analysis (the comparison
of the intensity of peaks). The limited
availability of solid textile standards is the
main disadvantage of using this technique
in quantitative studies.

Acknowledgments
The authors gratefully acknowledge the
assistance of Dr A. Flynn Saint from
GBC for taking part in the LA-ICP-MS-
TOF studies, and of Dr M. Cybulaska for
her assistance in identifying the sample’s
structure.

The financial support of this work by the
Polish State Committee for Scientific Re-
search (grant 3 T09 B 048 29) is gratefully
acknowledged.

References
of Wawel, the Polish Royal Castle in
Krakow, Fibres & Textiles in Eastern
Europe, vol. 13, No. 6(54), pp. 85 - 87,
2. Błyskal B., Ph.D. thesis, Academy of
Economics, Kraków 2005.
3. Research report within the project No. 4
T08E 047 22 (in Polish) carried out under
the direction of A. Włochowicz, financially
supported by the Polish State Commit-
tee for Scientific Research, University of
Bialsk-o-Biała, 2005.
4. Abdel-Kreem O., El-Nagar K., JTATM,
vol.4 (4) 2005.
5. Szynkowska M.I., Flynn Saint A., "Poten-
tial application possibilities of the TOF-
SIMS and LA-ICP-MS-TOF methods in
the research into works of art" (in Polish),
Proceedings of the 'Chemical analysis
in preservation of historical monuments’ –
6. Szynkowska M.I., Czerski K., Paryjczak
T., Rybicki E., Włochowicz A., ‘The use
of the ICP-MS-TOF method with laser
ablation for testing textiles’, Proceedings
of the ECOTEXTIL2006, 7th International
7. Szynkowska M.I., Czerski K., Paryjczak
T., Rybicki E., Włochowicz A., LAB, (5),
8. LA-ICP-MS-TOF Manual Instruction ,
GBC.
9. www.kobidz.pl, Leksykon włókienictwa,
10. Leśniewska E., Szynkowska M.I., Albińska
J., Paryjczak T., Rybicki E., ‘An application
of ICF-AES method in determining chosen
elements in wool samples’, Chemical
Products in Agriculture and Environment,
(ed. H. Górecki, H. Dobzrski), vol. 4,
11. Cieślak M., Ph.D. Thesis, Technical Uni-
versity of Lodz, 1996.

Received 20.07.2006 Reviewed 03.11.2006

Figure 10. Hg isotopes present in ecru weft (part of mass spectra).