Methods for Evaluating the Shielding Effectiveness of Textiles

Abstract

Materials with electromagnetic screening capabilities are widely used to attenuate the strength of electromagnetic fields in certain areas. Nowadays, instead of metallic shields it is more common to use various types of textile materials with the addition of special ingredients. These materials have good mechanical properties, such as being flexible and lightweight. Depending on the technology used to manufacture the different materials, we have observed the different proportions of two physical phenomena, absorption and reflection. The definition of screening effectiveness (SE) is directly related to an infinitely spread screening layer. The results of SE measurements depend on the method, frequency range, size of sample and properties of the material itself. The current state of work on standardisation and measurement methods for the SE of thin materials are also presented in this paper. The most important part of the paper is a discussion about the scope of application of the presented methods, their limitations and the possibilities for comparisons of the results.

Key words: shielding effectiveness (SE), thin materials, electromagnetic fields, textile screening materials.

Introduction

Shielding effectiveness is a key parameter which often determines the scope for application of a given material. Whilst we are able to determine the shielding effectiveness for metal shields just by knowing the materials’ electrical and magnetic parameters, when it comes to materials containing intertwined metallic or graphite threads, plastic materials containing metallised surfaces or composite materials, we are only able to determine the shielding effectiveness by actually measuring it. There are several methods available which allow the shielding effectiveness to be measured. However, for flat shielding structures, there are currently no standards defining the evaluation of small samples of only a few, several or even several tens of centimetres in size. The paper presents the authors’ experiences in using shielding effectiveness measurement methods, such as modifications of the MIL-STD-285 and ASTM D4935 methods, along with the prerequisites for applying those methods. These are commonly-used methods for evaluating the shielding properties of flat materials, especially textiles.

Shielding theory

The shielding theory is based on Maxwell’s equations. The currently accepted shielding theory of an infinitely spread thin surface is based on the relations originally derived by Schelkunoff [6] in 1943. A further expansion of this theory, along with many practical implementations, can be found in the work of Shulz, Plantz & Brush [5].

Shielding is defined as the ratio of the electromagnetic field intensity measured before and after the shielding material is installed. It is assumed that the shield is an infinite plane, and that it is located between the source of electromagnetic radiation and the measuring device. The area around the source of electromagnetic radiation can be divided into three distinctive areas (Figure 1):

- the far field-area, where we observe a plane wave, and where the field’s properties depend on the medium in which the wave propagates,
- the near field-area, where the field’s properties depend mainly on the parameters of the source of interference and on the surrounding area,
- the transitional area at the borderline of the above two areas.

The theoretical borderline between the far field and near field is assumed to be equal to \(r = \lambda / 2\pi \) (roughly \(\lambda / \pi \) of the wavelength - \(\lambda \)); in practice when we speak of the far field, the distance can be assumed as \(r > 5\lambda / 2\pi \).

One distinctive parameter describing the electromagnetic field is the ratio of the electrical field component \(E \) to the magnetic field component \(H \), known as the wave impedance \(Z = E/H \). For the far field, with interference propagation in an open space or air, the wave impedance is \(Z = E/H = Z_0 = 377 \) W. In the near field, this impedance depends on the properties of the source of the electromagnetic field, the distance of the source to the measurement point, and the propagation environment parameters. For a flat screen (see Figure 2), we can define the estimated relations (1 - 4) for the propagation environment parameters (an open space) and the screen.

\[
\gamma = \sqrt{\sqrt{\mu_0} + \sqrt{\sigma}} \quad (1)
\]

\[
Z = \sqrt{\frac{\mu_0}{\sigma}} \quad (2)
\]

Figure 1. Distinctive areas around a source of electromagnetic interference.
where:
\[\omega = 2\pi f \] - pulsation
\[\varepsilon, \varepsilon_0 \] - dielectric permeability
\[\mu, \mu_0 \] - magnetic permeability
\[\gamma, \gamma_0 \] - propagation constants
\[Z, Z_0 \] - characteristic impedance of the medium
\[\sigma \] - electrical conductivity
\[d \] - thickness of the shield.

The definition of shielding effectiveness is as follows:

\[\text{SE}[\text{dB}] = 20\log_{10}\left| \frac{P_1}{P_2} \right| \]
\[\text{SE}[\text{dB}] = 20\log_{10}\left(\frac{|E_1|}{|E_2|} \right) \]
\[\text{SE}[\text{dB}] = 20\log_{10}\left(\frac{H_1}{H_2} \right) \]

Knowing the parameters of the shielding material, we are able to define its shielding effectiveness [5].

\[\text{SE}[\text{dB}] = 20\log_{10}\left| \frac{P_1}{P_2} \right| + 20\log_{10}\left| \frac{E_1}{E_2} \right| = A + R + B \]

The methods for measuring shielding effectiveness described in MIL-STD-285 were later replaced by those in IEEE-STD-299. This document describes methods for measuring shielding effectiveness for enclosures, although with the smallest linear dimension of such enclosure being at least 2 m. The measurement range in this method is divided into 3 sub-ranges:
- low range - from 9 kHz (50 Hz) to 20 MHz – for the magnetic component (H),
- resonant range - from 20 MHz to 300 MHz – for the electrical component (E),
- high range - from 300 MHz to 18 GHz (100 GHz)– for the plane wave power (P).

The latest revision of IEEE-STD-299-2005 does not introduce any major changes to the measurement methodology, instead adding a section dealing with measurement uncertainty.
noted that the current standard described herein only pertains to the evaluation of the shielding efficiency of large enclosures as a whole; in other words, they do not evaluate the individual properties of the shielding materials. Considering this, there are numerous adaptations of this method which have been devised to evaluate the properties of flat shielding materials.

One such test setup was implemented in 1994 at the Institute of Telecommunications and Acoustics of the Wroclaw University of Technology (ITTA PW) [1] (Figure 3). The test area, in the shape of a 30-cm circle, was created by creating an opening in the doors of the shielded chamber. This opening was finished off with a circular collar having a stainless-steel double-spiral spring gasket, which provides excellent electrical contact with the material test samples.

An innovative solution was the use of a fibre-optic link between the external devices and the antenna inside the shielded chamber. The FO link allowed various resonance phenomena to be eliminated; these phenomena are caused by coupling between the antenna and the cable which feeds it the high frequency signal. Figure 4 presents an example of effectiveness measurement results before and after soaking the test fabric in water.

The measurement stands derived from MIL-STD-285 are usually used for test samples of application for this method. ASTM D4935 [4] standard, which described a test method for measuring the electromagnetic shielding effectiveness of planar materials. The most recent revision of this document dates from 1999. In contrast to the initial version, this document specifies the scope of application for this method. ASTM regulations require technical expertise to be performed for the current standards every 5 years, in order to decide whether the standard is to remain if force or if it should be withdrawn. Document D4935-99, which is under the authority of committee ASTM D09.12, responsible for topics related to electrical parameters of insulating materials, did not receive acceptance in September 2005. The rationale given for withdrawing this standard was that the committee could not maintain a standard for which the expertise may not lie within the current committee membership. Although the document is no longer supported by the ASTM, it is still being supplied for information purposes. Also, even though this is no longer a formal standard, the method described in that document is still widely used for measuring the electromagnetic shielding effectiveness of planar materials for a plane-wave.

In this method, the test adapter is constructed using a section of 50 Ω coaxial aerial, having a external-to-internal diameter ratio of 76 to 33 mm (Figure 5). The shielding effectiveness measurements are carried out for frequencies ranging from 30 MHz to 1.5 GHz. In practice, measurements starting from about 1 MHz would be possible, although certain limitations arise at lower frequencies because of the capacitive coupling operation and the limited dynamic range of the measurement devices, or to be more precise, that of the network analyser used for these measurements. For frequencies above 1.5 GHz, the field inside the test adapter is no longer a TEM wave because of the induction of higher order modes. The upper frequency should not exceed the cutoff frequency for mode TE$_{11}$

\[
\frac{c}{\sqrt{\frac{1}{2}(D+d)}}
\]

where:

- c – speed of light,
- D and d – diameters of the coaxial cables.

The above statement means that the upper frequency should not exceed 1.7 GHz. The test adapter is equipped with a 133-mm flange, which increases the capacitive coupling between the two halves of the measurement adapter. With a properly established test setup, the measurement uncertainty usually does not exceed ±2 dB for the above specified range of frequencies from 30 MHz to 1.5 GHz. The dynamic range provided

![Figure 4. Example presenting the effect of soaking the fabric on its shielding effectiveness.](image)
by this test setup exceeds the method described earlier, and reaches 100 dB. The measurement device may consist of a network analyser, which is capable of measuring insertion loss and return loss. The shielding effectiveness is determined by comparing the difference in attenuation of a reference sample to the test sample, taking into account the insertion and return losses. The measurement procedure consists of two stages; in the first stage, a reference sample is placed in the test adapter to compensate for the coupling capacitance. The sample is in the form of a 33-mm circle inside a 133/76-mm ring. The second stage uses the actual test sample (Figure 5).

The measurement adapter which we built (Figure 6) featured a slight improvement as compared to the original design, in order to assure better measurement repeatability. One of the changes involved removing the holding screws made of dielectric material. Here the constant pressure is achieved entirely through the large weight of the adapter. The sample is pressed down with a constant force provided by the upper half of the adapter, weighting about 7 kg. So far, several dozen samples of different shielding materials have been evaluated. The method proved effective for testing small planar samples of materials created as part of the project by the Textile Research Institute, Łódź, Poland. The major advantage of this test setup is its relatively short measurement time, which usually does not exceed 30 minutes, including all preparations for the test.

Figure 7 (page 22) presents sample measurement results obtained for the same sample measured normally (left), and with electrical insulation, by being placed inside a sheet of paper (right).

The authors of this paper ran a project titled ‘Development of a test methodology for small samples of planar materials and evaluation of shielding textiles and polymer-textile fabrics created during the project’ at the beginning of 2005, building and commissioning a test setup allowing for planar samples to be evaluated according to ASTM D4935-99. A diagram of this test setup is shown in Figure 5.

The authors of this paper ran a project titled ‘Development of a test methodology for small samples of planar materials and evaluation of shielding textiles and polymer-textile fabrics created during the project’ at the beginning of 2005, building and commissioning a test setup allowing for planar samples to be evaluated according to ASTM D4935-99. A diagram of this test setup is shown in Figure 5.

This method can be applied assuming the following prerequisites:

- the measurements obtained pertain to the far-field (plane wave) material’s parameters;
- the measurement frequency range is limited to within a range of 30 MHz to 1500 MHz;
- the thickness of the tested materials cannot exceed 1/100 of the wavelength of the EM wave in open space, i.e. the thickness of the material should not exceed 2 mm for a test frequency of 1500 MHz or 3 mm for 1000 MHz;
- in the case of homogenous materials with electrical and magnetic permeabilities not related to frequency, it is sufficient to perform the measurements for just a few selected frequencies;
- for relatively thick materials and/or materials with parameters related to frequency, the measurements should be performed for the entire frequency band;
- it is necessary to ensure a fixed distance between the adapter elements (constant pressure onto the surface of the sample – identical for the test sample as for the earlier calibration sample);
- for frequencies above 200 MHz, a calibration procedure has to be performed, in order to compensate for capacitive coupling between the elements of the measuring adapter;
- the result obtained for materials with different properties depending on wave polarisation will be an average result;
- measurement uncertainty (assuming the calibration procedure has been properly performed) should fall within ± 5 dB [3], where the most important influence onto the result is caused by the ‘human factor’.

Closing remarks

Based on the deliberations and experience of the authors, it is clear that at the cur...
rent state of research development there
is no measurement method which would
singularly define the shielding effective-
ness parameters of screening fabrics/
textiles, as defined earlier in chapter 2
of this paper. The shielding effective-
ness measurement results obtained using
currently known methods depend not
only on the properties/parameters of the
shielding material, but also on the size of
the test sample, the geometry of the test
setup, and the parameters of the source
of electromagnetic radiation. At the cur-
rent state of research development, it is
not always possible to take all of these
additional factors into account. It should
also be noted that there is currently no ef-
fective method for comparing the results
of shielding effectiveness measurement
obtained based on MIL-STD 285 &
IEEE-STD-299 for comparison to ASTM
D4935. There is also a lack of generally
accepted standardised methods for meas-
uring shielding effectiveness.

Considering this, whether developing
new textile materials designed for EM
shielding or modifying currently existing
materials designed for that purpose, in
order to check their parameters, compare
them to other materials or to evaluate the
effect of the implemented modifications,
one should always use the same measure-
ment method and the same test setup ge-
ometry. Also, when presenting research
results, one should always specify the
measurement method used along with a
description of the test setup geometry.
Only this approach will provide credible
results for comparison (material differ-
ences, modification effects etc.).

References

1. Grzebyk, W.; Janukiewicz, J.; Kucharski,
A; Skrzypczyński, J. & Więckowski, T.: Devel-
opment of a shielding effectiveness
measurement method for screening ma-
terials along with development of a test
setup, Report h-28/SPR-87/94, ITA PWr
2. MIL-STD-285, Military Standard. Attenu-
ation Measurements for Enclosures,
Electromagnetic Shielding, for Electronic
Test Purposes, Method of, Government
3. IEEE Std 299-1997, IEEE Standard Me-
thod for Measuring the Effectiveness of
Electromagnetic Shielding Enclosures,
IEEE, 21 April 1996.
4. ASTM D 4935-99, Standard Test Method
for Measuring the Electromagnetic Shiel-
ding Effectiveness of Planar Materials,
ASTM, June 1999.
5. Shulz, R. B.; Plantz, V. C. & Brush, D.
R.: ‘Shielding theory and practice’, IEEE
6. Schelkunoff, S. A.: Electromagnetic Wa-
7. IEC 61000-4-21 2003-08, Electromagne-
tic compatibility (EMC) –Part 4-21:Testing
and measurement techniques – Rever-
8. Sarto, M. S. & Tamburrano, A: Innovative
Test Method for the Shielding Effective-
ness Measurement of Conductive Thin
Films in a Wide Frequency Range, IEEE
Transactions On Electromagnetic Compa-
9. Hong, Y. K. et al.: ‘Method and apparatus
to measure electromagnetic interference
shielding efficiency and its shielding cha-
acteristics in the broadband frequency
10. Wilson, P. F. & Ma, M. T.: Techniques for
measuring the electromagnetic shielding
effectiveness of materials: Part I, IEEE
11. Wilson, P. F. & Ma, M. T.: Techniques for
measuring the electromagnetic shielding
effectiveness of materials: Part II, IEEE

Figure 7. Sample measurement results: a- coated fabric, b- coated fabric wrapped inside a sheet of paper.
Figure 8. Extension of frequencies foreseen by ASTM D4935: a – new measurement adapter, b – sample measurement result.