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Abstract
In this paper, the strain state of fibres located along the helical line in an extended yarn 
has been investigated. The slippage and mutual displacement of fibres relative to the yarn 
for analysis of the strain state of fibres in extended yarn are investigated. It is proposed for 
expression compressive transverse stress G, in our notation, to use the equation supposed in 
this work. The stress strain of fibres in extended yarn is examined and a comparison of the 
stresses between the cross-sectional and longitudinal directions is carried out. It is found 
that an increase in the twist angle leads to an increase in the compressive transverse stress 
of fibres in the centre of the yarn. It is also noticed that the axial stress strain depends on 
the twist angle of the yarn. The results obtained using this relationship are similar to those 
presented in previous studies.
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radial stress in the cross section of yarn 
is increasing gradually, which leads to an 
increase in the stiffness of the product, 
thus affecting stretching. Applying twist 
in the yarn causes the fibres to follow a 
helical path along its axis, as illustrated 
in Figure 1, which is given by Hearle 
et.al [13]. The stiffness of fibres located 
in the helical line generally increases to a 
certain level and then begins to decrease 
by increasing the inclination of the twist 
angle. As a result, the irregularity of the 
microstructure of the yarn and range 
of characteristics for yarn deformation 
(such as breaking load) can provide real 
yarn. In this case the heterogeneity of the 
microstructure of yarn, the presence of 
the relative displacement of fibres rela-
tive to each other and a large range of 
variation in some variables specific to 
the strain of the yarn allows to present 
the real yarn, in contrast to well-known 
works [14, 15, 17], as a combination of a 

in staple yarn, migration, slippage and 
other phenomena occur. Kinematical and 
geometrical modifications made to the 
spinning process lead to changes within 
the structure of the yarn. These modifi-
cations primarily refer to the speed and 
diameter of the rotor and spindle. Except 
the geometry of the delta and tension, 
such changes in the system essentially 
influence the structure and mechanical 
properties of the textile product. It is nec-
essary to consider that yarn formation 
conditions for prediction of the mechani-
cal properties depends on the method 
of spinning and speed of machines. It is 
well known that as the fibres get straight-
er as the structure of the yarn undergoes 
stress and converge, depends on the level 
of its twisting. The tensile properties of 
yarn and the effect of the twist amount, 
twisting tension and stress distribution 
on the yarn structure have been discussed 
by many researchers [1-22]. Hence the 

Symbols used
a  – various values of the parameter
b  – length of slippage region, mm
c  = cosa
Ef  – Young’s modulus for fibre (axial 

modulus of fibres), N/m2

Efr – frictional force, N
Ep – pulling force, N
g  – function of differential equation 

equilibrium of fibre in the matrix
G  – specific stress, perpendicular to 

fibre axis, N/m2

h  – yarn length, mm
r0  – radii of fibre investigated, mm
r  – distance of yarn element from cent-

er, mm
r*  = r/R
R  – yarn radius, mm
l  – fibre length, mm;
l  = h/cosθ
Lb = 2pr0
u  = c/cosθ
X  – tensile specific stress of fibres in 

yarn, N/m2

a  – yarn twist angle, deg
θ  – helix angle, deg
ey  – yarn deformation
ef  – fibre extension 
s1 – Poisson’s ration for longitudinal de-

formation of fibre (axial Poisson’s 
ratio)

sy – Poisson’s ratio for yarn (lateral 
contraction ratio of yarn) 

m  – coefficient of friction between fibres

n Introduction
It is well known that the structural com-
position of staple yarn is entirely differ-
ent from that of filament yarn. The loca-
tion of short fibres in the helical line is 
not similar with continuous filaments. 
Because of the limited length of fibres 

Figure 1. Ideal-
ised helical yarn 
geometry: a) Ide-
alized geometry, 
b) “opened-out” 
diagram of cylinder 
at radius r, and c) 
“opened-out” yarn 
surface [13].
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large number of elements with the simple 
laws of deformation, and the emergence 
and development of zones of slip in the 
yarn cross-section. This representation 
allows the yarn to be considered as ac-
ontinuum model with a structural frame-
work that enables to apply approaches 
for the study of the deformed state of the 
yarn. We have studied the deformation 
of the cylindrical filament form in the 
presence of yarn cross-sectional areas of 
stretching and slippage. Conditions un-
der which all of the fibres will be able to 
slip were determined. 

n Theoretical approach
The strain properties of yarn are more 
obvious at an early stage of loading, and 
then by increasing the stress these proper-
ties are transferred from a single system 
to a compact system of fibres with high 
module elasticity and low parameters. In 
previous studies it is noticed that during 
twisting and stretching, the cross section 
of yarn depends on the fibres located in 
two areas, such as the slippage and non-
slippage regions [14, 15]. In the absence 
of mutual displacement of fibres, and 
passing any point of cross section the de-
formation of it can be found by Hearle’s 
equation (4.22) [16] 

)sin(cos 22 θsθee yyf −=    (1)

Here 222 4/cos rhh pθ += . 
If fibre is located on the surface of the 
yarn then it is assumed that θ = a (where 
a - yarn twist angle). Let’s suppose that 
stress acting on the fibre in the axial di-
rection - X and compressive transverse 
stress - G. According to Hooke’s law, the 
linear deformation of fibre under these 
forces can be determined by Hearle’s 
equation (4.24) [16].
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A connection is established between 
the stress X = x/Efey and compression  
G = g/Efey [16] by comparing Equations 
1 and 2, as:

gx y 1
22 2sincos sθsθ −−=   (3)

Function g is the solution of the differen-
tial equation equilibrium of fibre in the 
matrix, and according to Hearle’s equa-
tion (equation 4.45 [16]) it has the form: 
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In the current work, it is proposed to 
compress the transverse stress G, in our 

notation using the equation derived by 
Chistoborodov et al [17].
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or taking into account expression ef from 
Equation 1, we have Equation 6  

Considering that g = G/Efey, we have 
Equation 7

Substituting expression g from Equa-
tion 6 into Equation 2, we have
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Substituting expression ef from Equa-
tion 1 in Equation 8, we obtain func-
tion X, see Equation 9, and considering  
x = X/Efey, we have Equation 10.

From Equation 10 it is obvious that func-
tion x(r) will take the form as in Equa-
tion 3, where it is necessary to choose 
g(r) by means of Equation 7.

Figure 2 presents typical curves of the 
function of ratio g to r* = r/R for differ-
ent values of twist angle a. It is seen that 
the compressive force (pressure) in the cen-
tre of the yarn takes the maximum value, 
which increase with an increase in the twist 
angle a significantly. A increas in the twist 
angle leads to the distribution of pressure 
along the radii of yarn irregularity. This pat-
tern is clearly visible at angles a  > 10°. 

Figure 3 (see page 22) shows distri-
bution curves of axial stretch stress  
x = X/Efey (according to Equations 10) 

along the radii of yarn at various values 
of twist angles a and ratios s1 and sy.

It is observed from analyses that fibres 
located in the centre of the yarn exhibit 
higher tension as compared with those 
at larger values of the twist angle away 
from the centre. Consequently axial stress 
along the radii of the yarn is mainly influ-
enced by the longitudinal Poisson’s ratio 
for yarn sy.

 Calculations by proposed 
scheme

Comparing the results of calculations 
carried out by the proposed scheme with 
dates in [16], we can conclude that they 
are both qualitatively and quantitatively 
similar to each other. This is due to the 
different expressions for compressive 
stresses G obtained by the two approach-
es based on equilibrium equations for 
yarn under the action of tensile stresses.

We define the value of the pulling force 
of single fibre and friction by means of 
equations derived by Chistoborodov et al 
[17], and Jumaniyazov et al [18].

Fp = pr0
2X, Ffr = mGl.Lb     (11)

Substituting Equation 11 into Equation 
9 for expression G and X from Equation 
6 and Equation 9, repectively, we have 
Equation 12 and Equation 13.

As the analysis shows, for expression 
Ff the axial stress reaches its maximum 
value in the central fibre, and the greater 
the distance from the center of the yarn, 
the more it is reduced. For some values of 
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Equations 6, 7, 9, 10, 12 and 13.
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and assuming (2pr1/h)2 ≈ 0 we can ob-
tain 
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Solving this equation with respect to r1 

the centre of the yarn to the layer then the 
slip condition at its boundary is

Fp = Ffr at r = r1            (14)

Substituting expressions Ff and Ffr from 
Equations 12 and 13 into Equation 14 

this stress, a central layer may form in the 
yarn i.e. a boundary which interacts with 
the rest of it, where there is the slippage 
of fibres between each other.  The force is 
determined according to Coulomb’s low. 
If we denote the distance as r = r1 from 

5.0,5.01 == yss

13.0,5.01 == yss

01.0,5.01 == yss

a) b)

a) b)

a) b)

(i)

(ii)

(iii)

Figure 2. Curves of compressed fibres with stress g = G/Efey 
at radii (ratio r* = r/R) for various values of twist angles a and ratios s1 

and sy in (i), (ii), and (iii), a) – by means of Hearle’s equation (equation 4.45 or 4.47 [16]), b) – by means of the equation proposed (10).
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where a = 1/(m0 + s1), m0 = mh/r0. Fur-
ther assuming 0 < a < 50°.

The length of the slip area is equal to  
b = R - r1. Thus when the axial stress 
of fibre becomes equal to the frictional 
force of fibres two zones in the cross 
section of yarn are formed. In the first 
zone, where the condition is r1 < r < R, 

all fibres starting from the boundary are 
in a slip condition relative to each other. 
In the second zone, where the condition 
is 0 < r < r1, slippage will be absent and 
the yarn structure in this zone is not 
distorted. When the condition is a ≥ 1 

5.0,5.01 == yss

13.0,5.01 == yss

01.0,5.01 == yss

a) b)

a) b)

a) b)

(i)

(ii)

(iii)

Figure 3. Curves distribution of the tensile stress of fibers (given) x = X/Efey at radii (ratio r* = r/R) for various values of twist angles a and 
ratios s1 and sy in (i), (ii), and (iii), a) by means of Hearle’s equation (equation 4.45 or 4.47 [16]), b) by means of equation proposed (10).
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(m0 ≤ 1 - s1), inequality (16) holds 
at any various values of r1 (0 ≤ r1 ≤ 
R), and all fibres will be in the slip-
page condition. Consider inequal-

ity (16) in a case where parameter is 
a < 1. From the condition of exist-
ence the under-root of sin2a - a ≥ 0  
and requirement of inequality r1 ≤ R, be 

amin ≤ a ≤ amax, where aarcsinmin =a , 
amax - the result of equation at r'1(a) = 0. 

If the inequality is a < amin all fibres in 
the yarn are in the slippage condition and 
twist angle values are a > amax in the 
yarn, which means there is no slippage 
area. Figure 4 shows the curve ratio of 
b/R and twist angle a for parameters “a”. 

It is observed that at values of param-
eter a = 0.05 (m = )20( 1

0 sm −=
h
r

(20 - s1)) at 

0 ≤ a ≤ 13° all fibres remains in 
the slippage condition. Further-
more by increasing the twist angle, 
the length of the slip area decreases 
rapidly and reaches a limit value of  
b = 0.0966 R. For a value of parameter 

a = 0.4 ( )5.2( 1
0 sm −=
h
r ) all fibres slip at 

0 ≤ a ≤ 39.25° and the length of the slip-
page area reaches at value of b = 0.494 R. 

Figure 5. Curve of the distribution of dimensionless axial stress x by the given fiber radii (ratio r* = r/R)  for various values of 
parameter = a and twist angles = a.

a) b)

c) d)

Figure 4. The typi-
cal ratio curves 
of the length of 
slippage area b/R 
to twist angle a  
at various val-
ues of parameter   
a = 1/(m0 + s1).
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If there is a slippage area then the axial 
tensile X(r) (referring to the value of

 
Efey) 

can be found by the following equations:
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Figure 5 presents typical curves of distri-
bution tensile axial stresses X(r) (referred 
to the value of Efey) from yarn radii (re-
ferred to the value of R) for various val-
ues of parameter a = 1/(m0 + s1) and twist 
angle a. 

In Figure 5, the blue curve corresponds 
to the minimum value of twist angle 

a== minaa . For values of angles a 
≤ amin all fibres in the matrix will be in 
the slippage condition, and they are not 
shown in Figures 5.a 5.b, 5.c and 5.d. It 
is observed that the stresses drop sharply 
in the slippage area. Thus at small values 
of the coefficient of friction m and twist 
angle a there could be some fibres (stress 
free) which do not play any role during 
tensile stretching on the surface of the 
yarn. 

n Conclusion
Comparing the results of the calculations 
carried out by the proposed scheme with 
those obtained in [13], we can conclude 
that they both qualitatively and quantita-
tively give similar results to each other. 
Significant differences were found at a 
value of Poisson’s ratio of s1 = sy = 0.5.  
Calculations based on two methods gave 
almost identical results at a < 30°, differ-
ing with the largest relative deviation of 
about 9.5% for values r = 0 at a = 50°. 
For small values sy of Poisson’s ratio, the 
calculation results are almost identical 
which is due to the fact that the expres-
sion of compressive stresses G obtained 
by the two approaches is based on the use 
of equilibrium equations for the element 
of yarn under tension. 

Particularly noteworthy results were 
obtained for large values of the torsion 
angle of yarn a. The magnitude of lat-
eral tension G (Figure 2), calculated for  
s1 = sy = 0.5 at a ≥ 60° at a certain dis-
tance from the centre of the yarn becomes 
zero and then negative, indicating the pos-
sibility of the occurrence of a migration 
zone of fibres (Figure 3). Furthermore 
the appearance of an area of fibre slip-
page relative to each other in the cross-
section of yarn was studied. It was estab-
lished that the length of this zone depends 
on the angle of torsion and parameter  a = 1/(m0 + s1). When the condition is  
a ≥ 1 all of the fibres will be able to slip 
at all values of the torsion angle. If it is  
a < 1, then the condition for the ap-
pearance of the slip zone is torsion an-
gle inequality amin ≤ a ≤ amax where  
amin = arcsin aarcsinmin =a , amax - the - root of 
equation r'1(a) = 0. When the inequal-
ity is a < amin all the fibres in the yarn 
will be in the condition of slip, and for 
values a > amax of the angles of twist in 
the yarn, there will be no slip zone. From 
the analysis of the curves shown in Fig-
ure 4, it is seen that for parameter value  
a = 0.05 when 0 ≤ a ≤ 13°, all fibres 
are able to slip. With a further increase 
in the angle of twist the slip zone length 
decreases rapidly, reaching a limit value 
of about b = 0.0966R. For parameter 
value a = 0.4 (curve 4) all fibres slip at  
0 ≤ a ≤ 39.25° and the length of the slid-
ing zone reaches the value b = 0.494R. 
In the slip area the tension drop sharply 
on the free surface of the yarn, and then 
vanishes. Thus for small values of the co-
efficient of friction m and angle of twist 
a, on the surface of yarn fibres, there can 
be no stress.
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